Discrete Vector Fields and Fundamental Algebraic Topology
نویسندگان
چکیده
2 Discrete vector fields. 4 2.1 W-contractions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Algebraic discrete vector fields. . . . . . . . . . . . . . . . . . . . . 6 2.3 V-paths and admissible vector fields. . . . . . . . . . . . . . . . . . 7 2.4 Reductions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4.1 Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4.2 The Homological Perturbation Theorem. . . . . . . . . . . . 12 2.5 A vector field generates a reduction. . . . . . . . . . . . . . . . . . . 12 2.5.1 Using Gauss elimination. . . . . . . . . . . . . . . . . . . . . 13 2.5.2 A vector field generates a reduction, first proof. . . . . . . . 15 2.5.3 Using the Homological Perturbation Theorem. . . . . . . . . 17
منابع مشابه
Homological optimality in Discrete Morse Theory through chain homotopies
0167-8655/$ see front matter 2012 Published by doi:10.1016/j.patrec.2012.01.014 ⇑ Corresponding author. E-mail address: [email protected] (H. Molina-Abril). Morse theory is a fundamental tool for analyzing the geometry and topology of smooth manifolds. This tool was translated by Forman to discrete structures such as cell complexes, by using discrete Morse functions or equivalently gradient vector f...
متن کاملOn subgroups of topologized fundamental groups and generalized coverings
In this paper, we are interested in studying subgroups of topologized fundamental groups and their influences on generalized covering maps. More precisely, we find some relationships between generalized covering subgroups and the other famous subgroups of the fundamental group equipped with the compact-open topology and the whisker topology. Moreover, we present some conditions unde...
متن کاملInternal Topology on MI-groups
An MI-group is an algebraic structure based on a generalization of the concept of a monoid that satisfies the cancellation laws and is endowed with an invertible anti-automorphism representing inversion. In this paper, a topology is defined on an MI-group $G$ under which $G$ is a topological MI-group. Then we will identify open, discrete and compact MI-subgroups. The connected components of th...
متن کاملToward Optimality in Discrete Morse Theory
Morse theory is a fundamental tool for investigating the topology of smooth manifolds. This tool has been extended to discrete structures by Forman, which allows combinatorial analysis and direct computation. This theory relies on discrete gradient vector fields, whose critical elements describe the topology of the structure. The purpose of this work is to construct optimal discrete gradient ve...
متن کاملComputational Discrete Morse Theory for Divergence-Free 2D Vector Fields
We present a simple approach to the topological analysis of divergencefree 2D vector fields using discrete Morse theory. We make use of the fact that the point-wise perpendicular vector field can be interpreted as the gradient of the stream function. The topology of the divergence-free vector field is thereby encoded in the topology of a gradient vector field. We can therefore apply a formulati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1005.5685 شماره
صفحات -
تاریخ انتشار 2010